Mark scheme - Carbon-Carbon Bond Formation

Questi on		Answer/Indicative content	Mark s	Guidance
1	i	 Curly arrow from ${ }^{-} \mathrm{CN}$ to C atom of $\mathrm{C}=\mathrm{O} \checkmark$ Dipole shown on $\mathrm{C}=\mathrm{O}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{O}^{\delta-}$, AND curly arrow from $\mathrm{C}=\mathrm{O}$ bond to O atom \checkmark Curly arrow from lone pair OR - charge on O^{-}of correct intermediate to $\mathrm{H}^{+} \checkmark$ Product Name of mechanism 1 mark Nucleophilic addition \checkmark	5 $(\mathrm{AO} 1$. $2)$ $(\mathrm{AO} 1$. $2)$ $(\mathrm{AO} 2$. $5)$ $(\mathrm{AO} 2$. $5)$ $(\mathrm{AO} 2$. $5)$ $(\mathrm{AO} 1$. $1)$	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on $\mathrm{C}^{-1}{ }^{-} \mathrm{CN}$ OR CN ${ }^{-}$ OR from minus sign on C of ${ }^{-} \mathrm{CN}$ ion (then lone pair on CN^{-}does not need to be shown) Curly arrow from $\mathrm{C}=\mathrm{O}$ bond must start from, OR be traced back to, any part of $\mathrm{C}=\mathrm{O}$ bond and go to O \qquad ALLOW curly arrow to H atom of $\mathrm{H}_{2} \mathrm{O}$, i.e. IGNORE attempt to draw curly arrow showing breaking of $\mathrm{H}-\mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}$ IGNORE lack of dipole on $\mathrm{H}_{2} \mathrm{O}$
	ii	Heterolytic One (bonded) atom/O receives both/2 electrons \checkmark Fission Breaking of a covalent bond \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 1 . \\ 2) \end{gathered}$	ALLOW 2 electrons go to one (bonded) atom/O DO NOT ALLOW both pairs of electrons go to O IGNORE formation of ions/radicals For O atom, ALLOW species DO NOT ALLOW element or molecule ALLOW π bond in $\mathrm{C}=\mathrm{O}$ breaks

				IGNORE breaking of $\mathrm{C}=\mathrm{O}$ bond (no reference to only one bond breaking) 'Bond breaking' is not sufficient (no reference to covalent) Examiner's Comments Candidates often referred to NaCN and HCN in their responses. Candidates who identified the correct bond breaking often then incorrectly wrote that the oxygen atom gained the lone pair of electrons.
		Total	7	
2		Marks for each correct structure/reagent shown below	5	ANNOTATE WITH TICKS AND CROSSES ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous For reaction with excess $\mathrm{H}_{2} / \mathrm{Ni}$ IGNORE hydrogenation of benzene ring i.e. the following structure scores two marks ALLOW KCN/H ${ }^{+}$ ALLOW HCN ALLOW $\mathrm{H}_{2} \mathrm{SO}_{4}$ or HNO_{3} or HCl for H^{+} Examiner's Comments This question proved difficult and although the majority of candidates scored in some parts, only the very best responses secured all five marks. More detailed feedback is discussed with Exemplar 8.

				that the CN group would also react but instead of writing $\mathrm{CH}_{2} \mathrm{NH}_{2}$ they replaced the CN group with just NH_{2}, effectivity removing a carbon atom from the chain. The second reaction of the hydroxynitrile is acid hydrolysis of the CN group. This response identifies the correct carboxylic acid. However, this reaction seemed unfamiliar to many candidates and a range of incorrect responses were frequently seen. The final reaction is the reduction of cinnamaldehyde with NaBH_{4}. Many candidates recognised this reaction, but as can be seen in this response the alcohol group is shown on the incorrect carbon atom. This was a common error. Candidates are advised to number carbon atoms present if provided with a complex structure, such as cinnamaldehyde. Numbering will ensure that each carbon is considered when drawing reaction products and would minimise errors, such as those demonstrated in the reduction product.
		Total	5	
3	i	curly arrow from ${ }^{-} \mathrm{CN}$ to carbon atom of $\mathrm{C}-\mathrm{C} /$ bond \checkmark Dipole shown on $\mathrm{C}-\mathrm{C} /$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{Cl}{ }^{\delta-}$, AND curly arrow from $\mathrm{C}-\mathrm{C} /$ bond to Cl atom \checkmark correct organic product AND C $1 \checkmark \checkmark$	2	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on $\mathrm{C}^{-1}{ }^{-} \mathrm{CN}$ OR CNOR from minus sign on C of ${ }^{-} \mathrm{CN}$ ion (then lone pair on CN^{-}does not need to be shown) IGNORE NaCl ALLOW $\mathrm{S}_{\mathrm{N}} 1$ mechanism: Dipole shown on $\mathrm{C}-\mathrm{Cl}$ bond, $\mathrm{C}^{\delta+}$ and Cl^{F}, AND curly arrow from $\mathrm{C}-\mathrm{C} /$ bond to Cl atom \checkmark Correct carbocation AND curly arrow from - CN to carbocation. Curly arrow

			e.g. HCl AND $\mathrm{H}_{2} \mathrm{O}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ AND $\mathrm{H}_{2} \mathrm{O}$ Examiner Comments Although many candidates were able to provide the structure of methanal as the starting material for this synthesis, the structures of chloromethanol, bromomethanol and iodomethanol were accepted as suitable alternatives. It should be noted that hydrolysis is carried out using aqueous acid and that dilute acid is not a suitable alternative.
	Explanation Nitrogen electron pair OR nitrogen lone pair AND accepts a proton $/ \mathrm{H}^{+} \checkmark$ AND C \uparrow	2	IGNORE NH_{2} group donates electron pair ALLOW nitrogen donates an electron pair to \mathbf{H}^{+} DO NOT ALLOW nitrogen donates lone pair to acid IGNORE comments about the O in the -OH group Compound \mathbf{H} is a base is not sufficient (role of lone pair required) DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton/ $/ \mathrm{H}^{+}$ required) ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous i.e. charges n IF charges are shown both need to be present ALLOW charge either on \mathbf{N} atom or $\mathrm{NH}_{3}{ }^{+}$ IF displayed then + charge must be on the nitrogen Examiner Comments Only 20\% of candidates were awarded both marks for this question. The commonest error

			was a failure to state that the N atom has a lone pair of electrons that can gain a proton. Answers stating that amines accept protons or that a salt is produced when an acid reacts with a base were not credited. Where a full displayed structure is given the positive charge must be shown on the nitrogen atom, although $-\mathrm{NH}_{3}{ }^{+}$is acceptable. As the question required the formula of the salt, the Cl had to be included.
	 Ester link \checkmark Rest of structure $\sqrt{ }$ (polymer \mathbf{J} is biodegradable because) the ester / ester bond / ester group / polyester can be hydrolysed \checkmark	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW more than two repeat units for second marking point. 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n Broken down by water is not sufficient IGNORE references to photodegradable Examiner Comments The most common mark for this question was two out of the three marks available, with candidates giving a correct structure of the polymer but failing to express that the polymer was biodegradable due the ability of the ester functional group to undergo hydrolysis.
	Total	11	

6.2.4 Carbon-Carbon Bond Formation

			Angle $\mathrm{a}=109.5^{\circ}$ Angle $b=104.5^{\circ}$ Angle $\mathrm{c}=120^{\circ}$ Two correct All three correct	2	ALLOW 109-110 ALLOW 104-105 ${ }^{\circ}$
	b	i	It is an electron pair donor OR donates a lone pair	1	
		ii	 Curly arrow from HO^{-}to carbon atom of $\mathrm{C}=\mathrm{O}$ bond Correct dipole AND curly arrow from $\mathrm{C}=\mathrm{O}$ bond to $\mathrm{O}^{\delta-}$ Curly arrow from negative charge on oxygen to $\mathrm{C}-\mathrm{O}$ bond (to reform carbonyl m-bond) Curly arrow from $\mathrm{C}-\mathrm{O}$ single bond to oxygen atom (to form methoxide ion)	4	Curly arrow must come from lone pair on O of $\mathrm{HO}^{-} \mathrm{OR} \mathrm{OH}^{-} \mathrm{OR}$ from minus sign on HO^{-}ion (No need to show lone pair if curly arrow came from negative charge on O) IGNORE dipole on C-O single bond Curly arrow must come from lone pair on O OR from minus sign on O^{-}ion (No need to show lone pair if curly arrow came from negative charge on O)
				2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
			Total	11	
6	a			1	

b		$2 \mathrm{Na}+2 \mathrm{CH}_{3} \mathrm{OH} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{CH}_{3} \mathrm{O}^{-}+\mathrm{H}_{2} \checkmark$	1	ALLOW $2 \mathrm{Na}+2 \mathrm{CH}_{3} \mathrm{OH} \rightarrow$ $2 \mathrm{CH}_{3} \mathrm{ONa}+\mathrm{H}_{2}$
	ii	Curly arrow from $\mathrm{CH}_{3} \mathrm{O}^{-}$to carbon atom of $\mathrm{C}-\mathrm{Br}$ bond \checkmark Dipole shown on $\mathrm{C}-\mathrm{Br}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{Br}^{\delta-}$ AND curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to the Br atom \checkmark Products of reaction (must not be ambiguous) \checkmark	3	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous. The curly arrow must start from \mathbf{O} atom of $\mathrm{CH}_{3} \mathrm{O}^{-}$ AND must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow comes from negative charge. ALLOW $\mathrm{S}_{\mathrm{N}} 1$ Dipole shown on $\mathrm{C}-\mathrm{Br}$ bond, $\mathrm{C}^{\text {}+}$ and Br^{6-}, and curly arrow from C Br bond to the Br atom. Correct carbocation drawn. AND curly arrow from $\mathrm{CH}_{3} \mathrm{O}^{-}$to carbocation. The curly arrow must start from the oxygen atom of the $\mathrm{CH}_{3} \mathrm{O}^{-}$, and must start either from a lone pair or from the negative charge.
		$\mathrm{CH}_{3} \mathrm{O}^{-}$donates an electron pair AND heterolytic fission \checkmark	1	ASSUME 'it' refers to $\mathrm{CH}_{3} \mathrm{O}^{-}$
c		Chemical shift, ס/ppm Relative peak area Splitting pattern $0.5-1.9$ 3 Triplet \checkmark $3.0-4.3$ 2 Quartet \checkmark $0.5-1.9$ 6 Doublet \checkmark $3.0-4.3$ 1 Heptet \checkmark	4	ALLOW δ values $\pm 0.2 \mathrm{ppm}$, as a range or a value within the range ALLOW multiplet for heptet
d		 Curly arrow from $\mathrm{CH}_{3} \mathrm{O}^{-}$to H of $\mathrm{CH}_{2} \checkmark$ Curly arrow from $\mathrm{C}-\mathrm{H}$ bond to C of $\mathrm{CH}_{2} \checkmark$	3	The curly arrow must start from \mathbf{O} atom of $\mathrm{CH}_{3} \mathrm{O}^{-}$ AND must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow comes from negative charge.

6.2.4 Carbon-Carbon Bond Formation

				ALLOW any unambiguous structure, skeletal, displayed, structural or combination.
	ii	$\mathrm{CH}_{3} \mathrm{O}^{-}$accepted a proton \checkmark	1	ASSUME 'it' refers to $\mathrm{CH}_{3} \mathrm{O}^{-}$
		Total	14	
7	i	Step 1: add HCN OR $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{KCN}$ $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$ Step 2: react with $\mathrm{H}_{2} / \mathrm{Ni}$ $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}_{2}$	4	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous first mark can be implicit from equation. third mark can be implicit from equation if Ni shown as catalyst (e.g. above the reaction arrow) ALLOW $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}+4[\mathrm{H}] \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}_{2}$
	ii	because (compound D) forms hydrogen bonds form with water demonstrated through diagram showing: - dashed line between - OH and (:) OH_{2} - dashed line between - NH_{2} and (:) OH_{2}	3	dipole and lone pair are not required IGNORE bond angles Diagram does not need to show all of Compound D (and IGNORE if wrong)
	ii		2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous 'End bonds' MUST be shown (solid or dotted) IGNORE brackets and / or n
		Total	9	

