## **Mark scheme - Carbon-Carbon Bond Formation**

| c | ues | sti | Answer/Indicative content                                                                                                                                                                                                                                                                           | Mark<br>s                                                     | Guidance                                                                                                                                                                                                                                                                                                                                                                                             |
|---|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 |     | i   | Mechanism  3 marks  CH <sub>3</sub> H <sub>3</sub> CH  CH <sub>2</sub> EN  Curly arrow from CN to C atom of C=O ✓  Dipole shown on C=O bond, C <sup>δ+</sup> and O <sup>δ-</sup> ,  AND curly arrow from C=O bond to O atom ✓  CH <sub>3</sub> H <sub>3</sub> CH  CH  CH  CH  CH  CH  CH  CH  CH  C | 5<br>(AO1.<br>2)<br>(AO2.<br>5)<br>(AO2.<br>5)<br>(AO2.<br>1) | ANNOTATE ANSWER WITH TICKS AND CROSSES  Curly arrow must come from lone pair on C of -CN OR CN-OR from minus sign on C of -CN ion (then lone pair on CN- does not need to be shown)  Curly arrow from C=O bond must start from, OR be traced back to, any part of C=O bond and go to O  ALLOW curly arrow to H atom of H <sub>2</sub> O, i.e.  H <sub>3</sub> C  CH  LCH  CH  CH  CH  CH  CH  CH  CH |
|   |     | ii  | Heterolytic One (bonded) atom/O receives both/2 electrons ✓ Fission Breaking of a covalent bond ✓                                                                                                                                                                                                   | 2<br>(AO1.<br>2)                                              | ALLOW 2 electrons go to one (bonded) atom/O DO NOT ALLOW both pairs of electrons go to O  IGNORE formation of ions/radicals  For O atom, ALLOW species DO NOT ALLOW element or molecule ALLOW π bond in C=O breaks                                                                                                                                                                                   |

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | IGNORE breaking of C=O bond (no reference to only one bond breaking)  'Bond breaking' is not sufficient (no reference to covalent)  Examiner's Comments  Candidates often referred to NaCN and HCN in their responses. Candidates who identified the correct bond breaking often then incorrectly wrote that the oxygen                                                                                                                                                                                                                                                                                                                |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | atom gained the lone pair of electrons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 | Marks for each correct structure/reagent shown below    Continue to the last form make   Continue t | 5 | ANNOTATE WITH TICKS AND CROSSES  ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous  For reaction with excess H <sub>2</sub> /Ni IGNORE hydrogenation of benzene ring i.e. the following structure scores two marks  OH  CH <sub>2</sub> NH <sub>2</sub> ALLOW KCN/H <sup>+</sup> ALLOW HCN ALLOW H2SO <sub>4</sub> or HNO <sub>3</sub> or HC/ for H <sup>+</sup> Examiner's Comments  This question proved difficult and although the majority of candidates scored in some parts, only the very best responses secured all five marks. More detailed feedback is discussed with Exemplar 8. |



|   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | that the CN group would also react but instead of writing CH <sub>2</sub> NH <sub>2</sub> they replaced the CN group with just NH <sub>2</sub> , effectivity removing a carbon atom from the chain. The second reaction of the hydroxynitrile is acid hydrolysis of the CN group. This response identifies the correct carboxylic acid. However, this reaction seemed unfamiliar to many candidates and a range of incorrect responses were frequently seen.  The final reaction is the reduction of cinnamaldehyde with NaBH <sub>4</sub> . Many candidates recognised this reaction, but as can be seen in this response the alcohol group is shown on the incorrect carbon atom. This was a common error.  Candidates are advised to number carbon atoms present if provided with a complex structure, such as cinnamaldehyde. Numbering will ensure that each carbon is considered when drawing reaction products and would minimise errors, such as those demonstrated in the reduction product. |
|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3 | i | curly arrow from ${}^-CN$ to carbon atom of C-C/ bond $\checkmark$ Dipole shown on C-C/ bond, $C^{\delta+}$ and $CI^{\delta-}$ , <b>AND</b> curly arrow from C-C/ bond to C/ atom $\checkmark$ $C_2H_5$ $C_2H$ | 2 | ANNOTATE ANSWER WITH TICKS AND CROSSES  Curly arrow must come from lone pair on C of ¬CN OR CN¬ OR from minus sign on C of ¬CN ion (then lone pair on CN¬ does not need to be shown)  IGNORE NaCl  ALLOW S <sub>N</sub> 1 mechanism:  Dipole shown on C−Cl bond, C <sup>δ+</sup> and Cl <sup>δ-</sup> , AND curly arrow from C−C/ bond to C/ atom ✓  Correct carbocation AND curly arrow from ¬CN to carbocation. Curly arrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|    |                                                                                                  |   | must come from lone pair on C of ¬CN OR CN¬OR from minus sign on C of ¬CN ion (then lone pair on CN¬ does not need to be shown) ✓ correct organic product AND Cl¬✓ c₂H₅ ¬C₂H₅ ¬C₂Hҕ ¬C₂Hҕ ¬C₂Hҕ ¬CN ¬CΩN ¬C₂Hҕ ¬CN ¬CΩN ¬CΩN ¬CΩN ¬CΩN ¬CΩN ¬CΩN ¬CΩN |
|----|--------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| :: | Compound G  H  Reagents                                                                          | 2 | ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous  IGNORE name(s) ALLOW OH C H C Br H C H C H C H C H C H C H C H C H C H                                                                                                                                                                                                     |
| ii | Reaction 2: H₂ AND Ni ✓  Reaction 3: Correct formula of an aqueous acid e.g. HC/(aq)/H₂SO₄(aq) ✓ | 3 | ALLOW LiAlH <sub>4</sub> for reagent in reaction 2  DO NOT ALLOW NaBH <sub>4</sub> for reagent in reaction 2  IGNORE names (question asks for formulae)  IGNORE references to temperature and/or pressure  ALLOW H <sup>+</sup> (aq)  IGNORE dilute  ALLOW formula of an acid AND water                                                                                 |

|    |                                                                                                                                  |   | e.g. HC/ AND H <sub>2</sub> O H <sub>2</sub> SO <sub>4</sub> AND H <sub>2</sub> O  Examiner Comments Although many candidates were able to provide the structure of methanal as the starting material for this synthesis, the structures of chloromethanol, bromomethanol and iodomethanol were accepted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|----------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                  |   | as suitable alternatives. It should<br>be noted that hydrolysis is carried<br>out using aqueous acid and that<br>dilute acid is not a suitable<br>alternative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ii | Explanation  Nitrogen electron pair OR nitrogen lone pair  AND  accepts a proton / H*✓  Structure of salt  OH  H  AND CF  AND CF | 2 | IGNORE NH <sub>2</sub> group donates electron pair  ALLOW nitrogen donates an electron pair to H <sup>+</sup> DO NOT ALLOW nitrogen donates lone pair to acid IGNORE comments about the O in the —OH group  Compound H is a base is not sufficient (role of lone pair required)  DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton/H <sup>+</sup> required)  ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous  ALLOW  OH  H  C  NH <sub>3</sub> CI  H  Le. charges n  IF charges are shown both need to be present  ALLOW charge either on N atom or NH <sub>3</sub> <sup>+</sup> IF displayed then + charge must be on the nitrogen  Examiner Comments  Only 20% of candidates were awarded both marks for this question. The commonest error |

|    |                                                                                                                                                                                  |    | was a failure to state that the N atom has a lone pair of electrons that can gain a proton. Answers stating that amines accept protons or that a salt is produced when an acid reacts with a base were not credited. Where a full displayed structure is given the positive charge must be shown on the nitrogen atom, although ¬NH <sub>3</sub> + is acceptable. As the question required the formula of the salt, the CF had to be included.  ALLOW any combination of skeletal OR structural OR |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iv | Ester link \( \square \)  Rest of structure \( \square \)  (polymer J is biodegradable because) the ester / ester bond / ester group / polyester can be hydrolysed \( \square \) | 3  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | Total                                                                                                                                                                            | 11 | the polymer was biodegradable due the ability of the ester functional group to undergo hydrolysis.                                                                                                                                                                                                                                                                                                                                                                                                 |

|   |   |    |                                                                      |   | ANNOTATE ANSWER WITH TICKS AND CROSSES  ALLOW any combination of                                                                      |
|---|---|----|----------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------|
|   |   |    |                                                                      |   | skeletal <b>OR</b> structural <b>OR</b><br>displayed formula as long as<br>unambiguous                                                |
|   |   |    | One mark for each correct structure/reagent/condition as shown below |   | IGNORE names of organic compounds (question asks for structures)                                                                      |
|   |   |    | conditions: AICI <sub>3</sub> ✓                                      |   | ALLOW aluminium(III) chloride OR aluminium trichloride                                                                                |
| 4 | а |    | acid (catalyst) V                                                    | 6 | <b>ALLOW</b> FeCl <sub>3</sub> <b>OR</b> Fe as halogen carrier in first step.                                                         |
|   |   |    | H CH3                                                                |   | ALLOW sodium borohydride OR sodium tetrahydridoborate                                                                                 |
|   |   |    |                                                                      |   | IGNORE [H] for reducing agent in second step                                                                                          |
|   |   |    |                                                                      |   |                                                                                                                                       |
|   |   |    |                                                                      |   | ALLOW H <sup>+</sup> / H <sub>2</sub> SO <sub>4</sub> / H <sub>3</sub> PO <sub>4</sub> / named mineral acid for reagent in third step |
|   |   |    | Use as an organic feedstock ✓                                        |   | <b>ALLOW</b> the production of plastics or monomers                                                                                   |
|   | b |    | OR                                                                   | 1 | or new polymers                                                                                                                       |
|   |   |    | Combustion for energy production √                                   |   | Combustion alone is <b>not</b> sufficient                                                                                             |
|   |   |    | Total                                                                | 7 |                                                                                                                                       |
| 5 | а | i  | CH <sub>3</sub> — C — H                                              | 1 | ALLOW any combination of<br>skeletal OR structural OR<br>displayed formula as long as<br>unambiguous                                  |
|   |   | ii | aqueous acid OR H⁺ / H₂O                                             | 1 | <b>ALLOW</b> H <sup>+</sup> (aq) / H <sub>2</sub> SO <sub>4</sub> (aq) / HC/(aq)                                                      |

|   |   |         | Annals - 400 5°                                                                                                                                                                                                                                                                                                                            |    |                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|---|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   |         | Angle a = $109.5^{\circ}$<br>Angle b = $104.5^{\circ}$                                                                                                                                                                                                                                                                                     |    | <b>ALLOW</b> 109–110°                                                                                                                                                                                                                                                                                                                                                                               |
|   |   | ii<br>i | Angle c = 120°                                                                                                                                                                                                                                                                                                                             | 2  | <b>ALLOW</b> 104–105°                                                                                                                                                                                                                                                                                                                                                                               |
|   |   |         | Two correct                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |   |         | All three correct                                                                                                                                                                                                                                                                                                                          |    |                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | b | i       | It is an electron pair donor <b>OR</b> donates a lone pair                                                                                                                                                                                                                                                                                 | 1  |                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |   | ii      | Curly arrow from HO <sup>-</sup> to carbon atom of C=O bond  Correct dipole <b>AND</b> curly arrow from C=O bond to O <sup>5</sup> -  CH <sub>3</sub> HO—CH—CH—CH <sub>3</sub> Curly arrow from negative charge on oxygen to C–O bond (to reform carbonyl π-bond)  Curly arrow from C–O single bond to oxygen atom (to form methoxide ion) | 4  | Curly arrow must come from lone pair on O of HO <sup>-</sup> OR OH <sup>-</sup> OR from minus sign on HO <sup>-</sup> ion (No need to show lone pair if curly arrow came from negative charge on O)  IGNORE dipole on C–O single bond  Curly arrow must come from lone pair on O OR from minus sign on O <sup>-</sup> ion (No need to show lone pair if curly arrow came from negative charge on O) |
|   |   | ii      | CH <sub>3</sub> —CH <sub>3</sub> O CH <sub>3</sub> CH <sub>3</sub> O CH <sub>3</sub>                                                                                                                                                                               | 2  | ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous                                                                                                                                                                                                                                                                                                         |
|   |   |         | Total                                                                                                                                                                                                                                                                                                                                      | 11 |                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6 | а |         | <b>√</b>                                                                                                                                                                                                                                                                                                                                   | 1  |                                                                                                                                                                                                                                                                                                                                                                                                     |

| b | i       | 2Na + 2CH <sub>3</sub> OH → 2Na <sup>+</sup> + 2CH <sub>3</sub> O <sup>-</sup> + H <sub>2</sub> <b>√</b>                                                                                                                                              | 1 | ALLOW 2Na + 2CH <sub>3</sub> OH → 2CH <sub>3</sub> ONa + H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | ii      | Curly arrow from CH <sub>3</sub> O <sup>-</sup> to carbon atom of C-Br bond ✓  Dipole shown on C–Br bond, C <sup>δ+</sup> and Br <sup>δ-</sup> <b>AND</b> curly arrow from C–Br bond to the Br atom ✓  Products of reaction (must not be ambiguous) ✓ | 3 | ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous.  The curly arrow must start from O atom of CH <sub>3</sub> O <sup>-</sup> AND must start either from a lone pair or from the negative charge.  No need to show lone pair if curly arrow comes from negative charge.  ALLOW S <sub>N</sub> 1 Dipole shown on C–Br bond, C <sup>δ+</sup> and Br <sup>δ-</sup> , and curly arrow from C–Br bond to the Br atom. Correct carbocation drawn. AND curly arrow from CH <sub>3</sub> O <sup>-</sup> to carbocation. The curly arrow must start from the oxygen atom of the CH <sub>3</sub> O <sup>-</sup> , and must start either from a lone pair or from the negative charge. |
|   | ii<br>i | CH₃O⁻ donates an electron pair  AND heterolytic fission ✓                                                                                                                                                                                             | 1 | ASSUME 'it' refers to CH₃O⁻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| С |         | Chemical shift, δ/ppm Relative peak area Splitting pattern  0.5-1.9 3 Triplet ✓  3.0-4.3 2 Quartet ✓  0.5-1.9 6 Doublet ✓  3.0-4.3 1 Heptet ✓                                                                                                         | 4 | ALLOW $\delta$ values $\pm$ 0.2 ppm, as a range or a value within the range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| d | i       | $H_3C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$                                                                                                                                                                                                            | 3 | The curly arrow must start from <b>O</b> atom of CH <sub>3</sub> O <sup>-</sup> <b>AND</b> must start either from a lone pair or from the negative charge.  No need to show lone pair if curly arrow comes from negative charge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|   |         |                                                                                                                                                                                                                                |    | <b>ALLOW</b> any unambiguous structure, skeletal, displayed, structural or combination.                                                                                                                                                                                                            |
|---|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | ii      | CH₃O⁻ accepted a proton <b>✓</b>                                                                                                                                                                                               | 1  | ASSUME 'it' refers to CH₃O⁻                                                                                                                                                                                                                                                                        |
|   |         | Total                                                                                                                                                                                                                          | 14 |                                                                                                                                                                                                                                                                                                    |
| 7 | i       | Step 1: add HCN OR H <sub>2</sub> SO <sub>4</sub> /KCN $ CH_3CHO + HCN \rightarrow CH_3CH(OH)CN $ $ Step 2: react with H2/Ni $ $ CH_3CH(OH)CN + 2H_2 \rightarrow CH_3CH(OH)CH_2NH_2 $                                          | 4  | ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous first mark can be implicit from equation.  third mark can be implicit from equation if Ni shown as catalyst (e.g. above the reaction arrow) ALLOW CH₃CH(OH)CN + 4[H] → CH₃CH(OH)CH₂NH₂ |
|   | ii      | because (compound <b>D</b> ) forms hydrogen bonds form <b>with</b> water  demonstrated through diagram showing: - dashed line between —OH and (:)OH <sub>2</sub> - dashed line between —NH <sub>2</sub> and (:)OH <sub>2</sub> | 3  | dipole and lone pair are <b>not</b> required <b>IGNORE</b> bond angles Diagram does <b>not</b> need to show all of Compound <b>D</b> (and <b>IGNORE</b> if wrong)                                                                                                                                  |
|   | ii<br>i |                                                                                                                                                                                                                                | 2  | ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous 'End bonds' MUST be shown (solid or dotted)  IGNORE brackets and / or n                                                                                                                |
|   |         | Total                                                                                                                                                                                                                          | 9  |                                                                                                                                                                                                                                                                                                    |